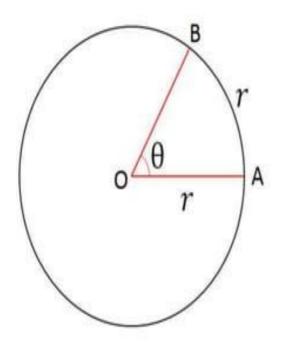
Definition of metre

The metre is the length of the path travelled by light in a vacuum during a time interval of 1/29,97,92,458 of a second.

Definition of kilogram

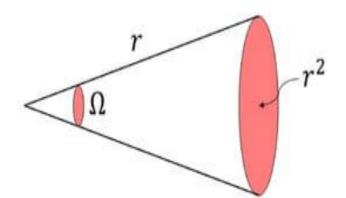
The kilogram is the mass of prototype cylinder of platinum-iridium alloy preserved at the International Bureau of Weights and Measures, at Sevres, near Paris.


Prototype cylinder of platinum-iridium alloy

Definition of second

One second is the time taken by 9,19,26,31,770 oscillations of the light emitted by a cesium-133 atom.

Two supplementary units


1. Radian: It is used to measure plane angle

$$\theta = 1 \text{ radian}$$

Two supplementary units

2. Steradian: It is used to measure solid angle

 Ω = 1 steradian

1

Full name of unit always starts with small letter even if named after a person.

· newton

· Newton

· ampere

not

· Ampere

· coulomb

· Coulomb

Rules for writing SI units

2

Symbol for unit named after a scientist should be in capital letter.

- N for newton
- A for ampere
- K for kelvin
- · C for coulomb

3

Symbols for all other units are written in small letters.

- m for meter
- s for second
- kg for kilogram
- · cd for candela

Rules for writing SI units

4

One space is left between the last digit of numeral and the symbol of a unit.

10 kg

10kg

• 5 N

not

• 5N

· 15 m

· 15m

5

The units do not have plural forms.

not

- · 6 metre
- 14 kg
- · 20 second
- 18 kelvin

- · 6 metres
- 14 kgs
- · 20 seconds
- 18 kelvins

Rules for writing SI units

6

Full stop should not be used after the units.

not

- · 7 metre
- · 12 N
- 25 kg

- · 7 metre.
- 12 N.
 - 25 kg.

7

No space is used between the symbols for units.

· 4 Js

· 4Js

· 19 Nm

not

· 19 N m.

· 25 VA

· 25 V A.

SI prefixes

Factor	Name	Symbol	Factor	Name	Symbol
1024	yotta	У	10 ⁻¹	deci	d
10 ²¹	zetta	Z	10-2	centi	c
10 ¹⁸	exa	Е	10-3	milli	m
10 ¹⁵	peta	Р	10-6	micro	р
1012	tera	Т	10 ⁻⁹	nano	n
109	giga	G	10-12	pico	р
106	mega	M	10-15	femto	f
103	kilo	k	10 ⁻¹⁸	atto	a
10 ²	hecto	h	10-21	zepto	z
101	deka	da	10-24	yocto	у

1 nm - 10-6 mm 1 µm - ___m (1m) -- pm 1mm -> 106 nm 3) 1m - 10 6 mm - 10 6 mm 1cm - 107nm 107 - 1nm 15-A = 1m-1 µ m = 10 m =106x rozme =15 cm

CVSI X Sid $\frac{10^3}{2000}m$ $\rightarrow 5 \times 10^{3} \text{ cm}$ 3.2 km -> 3.2 × 106 mm 1 mm = 10⁻⁶ km 1 pm = ____ d We know, 10-12 - 10'2/01m - 15'2/01m ____dm - 15" dm

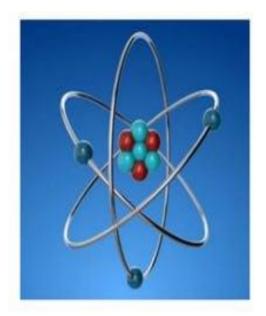
Use of SI prefixes

- 3 milliampere = $3 \text{ mA} = 3 \times 10^{-3} \text{ A}$
- 5 microvolt = $5 \mu V = 5 \times 10^{-6} V$
- 8 nanosecond = 8 ns = 8×10^{-9} s
- 6 picometre = 6 pm = 6×10^{-12} m
- 5 kilometre = 5 km = 5×10^3 m
- 7 megawatt = $7 \text{ MW} = 7 \times 10^6 \text{ W}$

Some practical units for measuring length

1 micron = 10^{-6} m

Bacterias


1 nanometer = 10^{-9} m

Molecules

Some practical units for measuring length

1 angstrom =
$$10^{-10}$$
 m

Atoms

1 fermi = 10^{-15} m

Nucleus